
2 CROSSTALK The Journal of Defense Software Engineering October 1998

Letter to the Editor

From the Publisher

Elizabeth Starrett’s article, “Measure-
ment 101,” CROSSTALK, August 1998,
was interesting and well written, but it
left out a critical point. Metrics based
on “source lines of code” move back-
ward when comparing software appli-
cations written in different program-
ming languages. The version in the
low-level language will look better than
the version in the high-level language.

In an article aimed at metrics nov-
ices, it is very important to point out

some of the known hazards of software
metrics. The fact that lines of code
can’t be used to measure economic
productivity is definitely a known
hazard that should be stressed.

In a comparative study of 10 ver-
sions of the same period using 10
different programming languages (Ada
83, Ada95, C, C++, Objective C, PL/
I, Assembler, CHILL, Pascal, and
Smalltalk), the lines of code metric
failed to show either the highest pro-

ductivity or best quality. Overall, the
lowest cost and fewest defects were
found in Smalltalk and Ada95, but the
lines of code metric favored assembler.
Function points correctly identified
Smalltalk and Ada95 as being superior,
but lines of code failed to do this.

Capers Jones
Software Productivity Research

Software developers
often view software as
a stand-alone entity,
rather than as a piece
of a larger system that
includes hardware and
users. This can lead to

many problems in system development.
However, this problem can affect other
people in the systems development
loop, as demonstrated by the following
tongue-in-cheek E-mail exchange:

Project X team lead: To the senior
management team: Since last week’s update, System
X’s hardware has remained on schedule, but the
software problems are looking even more serious.
We’re averaging nearly an error per function point
on the System X software, and we now project that
the software is 18 weeks behind schedule, plus it’s
already $220,000 over budget with an additional
$27,000-per-week burn rate. We’re still waiting for
your input on these and the other software prob-
lems we’ve been telling you about.

Senior management: We’re glad the
hardware is on schedule. Please stop bothering us
with updates on software glitches. Just do whatever
it takes to ensure System X meets the delivery
schedule in eight weeks.

Project X team lead: Okay, we won’t
bring up software problems with you anymore. By
the way, we have refigured the system schedule: The
system will be delivered at least 18 weeks late, and

the system is already $220,000 over budget and
counting. Please comment.

Senior management: We need an
emergency meeting right away. Why didn’t you tell us
earlier that the system was in trouble?

Efforts to implement better prac-
tices and more mature processes have
been going on for years now in the
Department of Defense (DoD). The
Capability Maturity Model (CMM) for
Software was developed to “provide
software organizations with guidance
on how to gain control of their pro-
cesses for developing and maintaining
software and how to evolve toward a
culture of software engineering and
management excellence” (CMM for
Software, Version 1.1, CMU/SEI-93-
TR-24, p. 5). In the DoD, it has been
the model of choice for software and
has improved cost, quality, and sched-
ule performance in organizations where
it has been skillfully applied.

Unfortunately, most software organi-
zations still have a long way to go be-
fore they will be mature and disciplined
enough to avoid the self-inflicted prob-
lems that are wrongly assumed to be a
natural part of software development.
The same applies to the problems
caused by the widespread lack of disci-
pline in systems development.

Many improvement efforts are now
ongoing in the various engineering
disciplines related to systems develop-
ment. Early indicators from organiza-
tions that use the resulting models
reveal that the application of the prac-
tices defined in these models leads to
more discipline, which results in im-
proved schedule, cost, and quality.

Each of the past and present models
and standards attempts to move system
development toward more disciplined,
mature behavior. To help you keep
track of all these developments, Randall
Wright’s article (p. 7) eliminates some
of the confusion regarding different
systems engineering models that have
evolved since process improvement
efforts began.

CROSSTALK has long discussed pro-
cesses and process models for software.
Most of the articles in this issue discuss
software in the context of the larger
system. We hope it will help you better
understand DoD’s and industry’s game
plan for future success in systems devel-
opment. Slowly but surely, we should
hope to see the day when most organi-
zations produce systems and systems
software with greater discipline and
maturity. u

Are We Headed Toward a Disciplined World?
Forrest Brown

Managing Editor

Software Metrics Hazards


